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The dynamical description of a thin vortex filament in a perfect fluid is generalized to a charged fluid
on a neutralizing background. The filament curvature and torsion evolve integrably according to a
higher nonlinear Schrédinger equation, which is found using the Hasimoto transformation. Because of
screening, local induction is accurate, and the logarithmic long-range divergency is removed. Linear
waves, such as the Kelvin mode, are supported by the filament, as well as nonlinear waves and solitons.
The effects of vortex stretching are briefly discussed. Applications of the results are found in electron
magnetohydrodynamics and in type II superconductor theory.
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I. INTRODUCTION

The study of infinitely thin vortices in two-dimensional
(2D) and three-dimensional (3D) fluid dynamics is
motivated by several facts. Some qualitative understand-
ing of vortex dynamics may be obtained from simple ar-
guments disregarding any internal structure of vortices.
There is considerable mathematical tractability (and
beauty) in models of point vortices or infinitely thin vor-
tex filaments (VF’s) [1,2]. Observations in nature of
strongly localized vorticity distributions can be quite im-
pressive (e.g., the tornado) and intriguing (as in superfluid
helium). Computational fluid dynamics may benefit from
a separate introduction of strong vortices in roll-up or
shear layers [3]. The spontaneous appearance of vortex
filaments in strong turbulence is observed in numerical
(e.g., [4]) and laboratory (e.g., [5]) experiments.

The equations of motion of a single VF as expressed in
its curvature and torsion, the Betchov-Da Rios equa-
tions [6,7], were elegantly transformed into the cubic
nonlinear Schrodinger equation (NSE) by Hasimoto [2],
and may thereby in principle be regarded as solved.
Apart from the linear Kelvin waves [8], the VF supports
solitons and waves of various kinds, e.g., as given in Refs.
[2,9-11].

Despite this beautiful success story of VF theory, some
features remain to be dealt with. It is not the purpose of
this work to accomplish this by providing an ultimate
discussion of nonlocal effects, vorticity structure and axi-
al flow effects, reconnection, or vortex stretching. (For
example, the extension to a VF with axial flow [12] seems
to fit experimental observations better [13].) But a main
result is that our generalization to a charged fluid on a
neutralizing background eliminates the logarithmic diver-
gence that stains the above-mentioned success; viz, the
need to introduce an ad hoc long-range cutoff, the local-
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ized induction approximation (LIA), in the expression for
the VF self-velocity derived from a Biot-Savart law, is re-
moved. The London penetration depth is a natural cutoff
scale. There have been analytical efforts to excuse for
this imperfection in neutral fluids, reviewed in the mono-
graph by Saffman [14]. Some numerical work has shown
that qualitatively, but not quantitatively acceptable re-
sults are obtained when relying on the LIA [3,15]. In the
charged fluid context, this discussion becomes obsolete.

Despite the fact that the equation we derive is a per-
turbed NSE, it turns out to be as exactly integrable as the
unperturbed equation. This is a consequence of the non-
stretching property of the filament curve [16]. By includ-
ing some structure dynamics of the vortex core, nonin-
tegrability is introduced via a second coupled equation.
This effect enters as an even smaller perturbation than
the previous one. We conclude that a certain linear wave
on the filament will grow in amplitude, but that non-
linearly the influence will be small, and we do not consid-
er it further.

We focus on two areas of application of the results de-
rived in this paper. First, in type II superconductor
theory, where a few old results will reappear [17-19],
moral support for a rather recent development is given
[20,21]. The well-known result of Kelvin waves on a flux
line is reproduced, along with some other waves and soli-
tons that we believe to be previously unknown in this
context. This is done using a macroscopic treatment,
which could be identified as a time-dependent London
model. The “moral support” concerns the computation
of flux line dynamics, especially in 3D geometry. Flux
line cutting (reconnection) appears to be strongly discrim-
inated by quasi-2D models.

Second, in plasmas there are events on time and space
scales where ion dynamics is too slow to be relevant. The
electron magnetohydrodynamical (EMH) model [22]
developed to describe these phenomena in terms of elec-
tron and magnetic field motion is actually the charged
fluid model we consider in this paper.

In Sec. II we derive the equations of motion for a
charged fluid, and in particular the expression for the ve-
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locity of a VF. The Hasimoto transformation is carried
out in Sec. III, leading to a discussion of a Hamiltonian
and other invariants of the motion in Sec. IV, where we
also discuss integrability. Linear theory follows in Sec.
V. The discussion of physical applications is given in Sec.
VI A for superconductors and in Sec. VIB for plasmas.
A summary follows in Sec. VII.

II. EQUATIONS OF MOTION

The present model is known in plasma physics as elec-
tron magnetohydrodynamics (EMH) and is reviewed in
Ref. [22]. The stability of vortices with respect to short
wave perturbations was shown by Ivonin [23] and some
special solutions were given by Isichenko and Marnachev
[24]. We briefly show how to obtain the standard EMH
equation of motion for the magnetic field. The true appli-
cability to plasmas is dealt with in Sec. VI B.

The equation of motion for an electron fluid is (neglect-
ing collisions with the neutralizing background)
av

E"FV'VV

—vp

m =———;——e(E+v><B) , (1)

where m and —e denote the electron mass and charge,
and v, n, and P denote the electron fluid velocity, number
density, and pressure. In the regime where the electron
displacement current can be neglected, Ampere’s law for
the magnetic field B takes on the appearance

VXB=—ppenv , ()

and the electric field E is sufficiently determined by
Faraday’s law.
Assuming P=P(n) and taking the curl of Eq. (1), it
can be given the form
a0

§=VX(VXQ), (3)

where
Q=VXp, p=mv—eA.

The statement of Eq. (3) is that the curl of the generalized
momentum is frozen in the fluid. This fact has been
pointed out by several authors in the past [25]. Using (2)
in the definition of Q we find Q= —e[B+V X (A2VXB)],
where A=c /@, is the penetration depth of the magnetic
field, sometimes referred to as the London length. The
electron plasma frequency is given by co%,e=ne2/ me,.

In this paper we will consider the homogeneous case,
and hence the expression for the generalized vorticity Q
is written

0O=B—A\?V’B. 4)

In this expression we have rescaled the magnetic field and
generalized vorticity, B'=—eB/m, Q'=Q/m, and
dropped the primes. Equation (3) with (4) and the res-
caled version of (2),

v=AVXB, (2

inserted constitutes the basic equation of motion.

Two remarks are in order here. First, Eq. (3) can be
obtained in an elegant way from the one-particle Hamil-
tonian

2
H=P(q,p)+e¢+(J’i2fn—A)— .

P is some generalized potential. As this Hamiltonian is
the same for all electrons, or electron fluid particles, the

relative Poincaré invariant [26] I= ﬁcp-dq taken at one

instant in time is equally invariant when interpreted as a
circulation integral [ ,c_.,0(q)-dS for an arbitrary
closed curve C in the fluid. This is again a statement of
freezing of Q in the fluid. This topic has been pursued by
Yankov and Petviashvili [27], who also considered a
more general Hamiltonian. The demand that all fluid
particles have the same Hamiltonian is equivalent to the
particle relabeling symmetry. Ripa and Salmon em-
phasize this view and interpret the invariant as a Noether
invariant [28]. Either way, by relaxing this symmetry to
subsets of all particles, an Ertel theorem has been ob-
tained in an elegant manner [27,28]. We remind the
reader that there is another simplest Poincaré invariant
expression, q-dp as well, which might be more con-

venient to use in some situations.

Second, we note that Q consists of a magnetic and an
inertial term. In the limit where the magnetic term com-
pletely dominates, Alfvén’s theorem of the freezing-in of
the magnetic field is obtained, albeit for an electron fluid.
In the converse limit we find Kelvin’s circulation
theorem.

We now turn to the question of vortex filaments (VF’s)
in a charged fluid [29]. Because of freezing-in, they will
move with the fluid and stay localized. Our idealized VF
will be described as follows. Consider a filament along
the curve r=c(s), where s is the arclength. The curve
may be closed or it may extend to infinity. Filaments
that end on a surface have image filaments that close
their curves, possibly at infinity. The generalized vortici-
ty distribution is

Q(r)= f?tbS(r—c(s))ds )

1 is the unit tangent vector and @ is the conserved circu-
lation around the VF, in units of action in dimensional
variables. Two sets of boundary conditions will be im-
portant to us: homogeneous and periodic. By homogene-
ous boundary conditions we mean that the curve ap-
proaches a straight line at infinity. Periodic boundary
conditions means that the curve is finite and closed.

Because there is a finite energy density associated with
the filament, there will be an “unbending” force directed
toward the center of curvature. The “inertial response”
of a vortex is the Magnus force. Hence, it acquires a ve-
locity in the binormal direction. We return to this pic-
ture in Sec. V, and give a more geometric derivation of
the velocity here.

The self-induced velocity at any point in the fluid is
given by a Biot-Savart law

vin= [VG(r—r)xQr)av’, (5)
where, for an Q of the form of Eq. (4),
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—R/A

_e
G(R) 4R’

is the Green’s function. It reduces to that of an Euler
fluid in the limit A— . The integral in Eq. (5) is
effectively a line integral along the VF, i.e., QdV’'— ®ds.
To find the self-induced velocity of a point r=c(0) on the
filament, we expand the expression for ¢ around that
point, using the local Frenet frame. Parameter subscripts
will denote differentiation. Then, as t=c, the right-
handed orthonormal frame (%,fi,b) satisfies the Frenet
formulas

A

£ 0 « 0]t
A, |=|—-«x 0 7||8|,
5 0 —70J|b

s

where « is the (first) curvature and 7 the torsion (or
second curvature). They depend on s and on time ¢, but
we will suppress as much of these dependencies as possi-
ble in writing. Now we can expand c(s) and T(s) as

c(s)=r+’t\ S—S—KZ—-iKK + .
6 g °
2 3 4
+4 —SZ—K+%KS+—;:[KSS—K(K2+TZ)]+ ]
3 4 (k*r)
~ 1S S s
+ = +__ aee s
Pl T T ]
2 3
(s)=1 1—52—K2"S?Kss+ ]
A S2 S3
+1 SK+7K3+?[KSS—K(K2+T2)]+ e
2 3 (k1)
~lS S s
+5 | S wrt L
2776« ’

~

where T, @i, b, «, 7, and g on the right-hand side are evalu-
ated at s=0. The expansion procedure is valid if
g, =kA<<1, and all terms of order A? will be equally im-
portant if k~7~0d/0s. Assuming sufficient differenti-
ability, the expression for the velocity will be valid for
any and all points on the filament. Expanding
R =|r—c(s)| in 5 and inverting to get s =s(R) the veloci-
ty is found from Eq. (5) to be

_ q) a 3}\2 A2 2 ,\(KZT)S
v(s) = brA+ 4 t3K7' n—-
+b K“—KTZ+7 (6)

for an element at c(s), where s can be chosen as arbitrari-
ly as the s =0 point can. An approximation to the lead-
ing order term has been given in the context of type II su-
perconductors [18]. We do encounter a singularity here.
A is defined as the logarithmically divergent (at zero)

 rwe R
A—fg z

dR +1=Ei(e)+1,

where e, =§/A<<1. § is a suitable short-range cutoff,
taken to be an effective radius of the filament. For an ex-
tensive discussion of this kind of regularization, see
Saffman [14]. It is reasonable to choose £ such that |v(s)|
is smaller than some model limiting velocity, e.g., the
electron Alfvén speed v ,, =B /V pomn [22]. If a sound
wave is present in the system [by modification of Eq. (1)],
the sound speed should not be challenged, in order to en-
sure that internal compressible dynamics of the filament
core does not come into play. Strictly speaking, for con-
sistency this cutoff should be imposed on the regular
terms as well, but this would only result in terms of the
order of eze, and a factor of exp(—e,)~1.

The most notable difference from the dynamics of an
Euler fluid filament is that the velocity only depends on
nearby parts of the filament, artificial long-range cutoffs
hence being superfluous. The leading order term in (6) is
expected to be strongly dominating, but we will pay some
attention to the effects of the smaller terms because they
introduce new features. In the next two sections, where
we discuss the Hasimoto transformation and invariants,
it will be seen that these terms introduce vortex stretch-
ing effects, implying nonintegrability. One should be
aware of these, although the main line of our exposition
is to neglect them. The order of smallness of these terms
is the same as that of the first nonconstant term of the en-
ergy, c.f., Eq. (10), but nonintegrability only enters to an
even higher order.

To simplify the description of the motion of the fila-
ment, we separate the local stretching of the filament
from the motion of the curve along which the VF lies.
The velocity u(s) of the curve is obtained by subtracting
from v(s) the integrated stretching T f oV ds’ [30], where
the stretching rate

ae = P35,
Y=t i 4 3(K7‘)S.
The result is
~ 2 ~ (k*7)

u(s)—2 b A+ik— —ttr— !

47 4 K

~ K3
+b KSS—KTZ+—2— , @)

the velocity of the curve. [To keep track of a point of at-
tachment of the curve to the filament, the lower limit
term of the integral should be included.] We see, for ex-
ample, that the velocity of a plane, circular vortex ring is

~ 3e2
llR :b% A— o ] .

8

In the model, there seems to be no mechanism of shrink-
ing of a vortex ring, although this phenomenon seems to
be accepted ever since an argument of energy decrease
was put forward long ago [19]. Friction, as expressed by
the Hall and Vinen parameters, has been shown to ac-
count for ring shrinkage in superfluid helium [30], and is
a natural candidate in a charged fluid as well.

Because of the freezing-in of ) and incompressibility,
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the volume of the filament is locally conserved. But then
the stretching must be compensated by a change in the
cross-sectional area (assumed proportional to £?): £,

= —vy£/2, and hence
Az:}?"—e“g/}hz%— . (8)

By this construction, sections of the filament may slide -

along the curve whenever y#0, but the curve is in each
moment nonstretching. Note that the total length L of a
closed filament does not change: L, = ﬁ vy ds=0.

It will be useful to know the energy of the filament. In
the rescaled fields, the energy density is given by
(nA?/2)B-Q. Thus,

E=1[nA’B-Qav
=1 [ ['nG(|r—r')Q(r)-QUr YAV dV’ ©)

and to lowest geometry-dependent order the energy line
density (tension) is found to be

— n®?

3
A—2¢g?
4

g &«

€ (10)

In Ref. [19] this expression was given (in other units) with
a less accurate value of A.

III. HASIMOTO TRANSFORMATION

The intrinsic evolution equations for x and 7, given
u(s), probably first derived by Germano [31] and recently
derived in a general manner by Ricca [32], are given in
Sec. IV. For the moment we will pass to another way of
expressing the motion.

J

2 2
o A+ PO+ 2 G+ 2101+ 2 9 g+ 30000, 1= 40

2
A=y T syt~ 1 )

In analogy to what was said about (13), we can eliminate
the rhs of (14a) by shifting the phase of ¢ an amount
—i f oA (2")dt’. The nonlocal velocity term that we omit-
ted in (7) would take the form B (¢)y,, and this is also re-
movable by a simple transformation [30]. These compli-
cations are consequences of using the arclength coordi-
nate s, and of the definition of ¢, Eq. (11). In the follow-
ing, we will consider

2
i+ Al + 3P0+ G+ 3 1919)
37“2 2 * =
+ g [ +3Y,) 9" 1=0  (140)

to be the basic equation. One should keep in mind that
simple solutions ¥ (see Sec. V) become nontrivial if A4 (z)

In a celebrated paper [2] Hasimoto introduced the fol-
lowing transformation and applied it to the dominating
term in the Euler fluid counterpart of Eq. (6) (which has
the same appearance). With a phase carrier

= i [rds’ 11
@=exp [tfofds ] , an
the vector and scalar

N=@{@+iblp, Y=«

are defined. After some manipulations it is found that ¢
satisfies [30]

iiﬁ:"’llff;Kﬁ'us'dS’—i(N-us );=0 . (12)

Rescaling time as t'=t® /47 for the remainder of this
section and Sec. IV and dropping the prime, the first term
in Eq. (7) inserted into (12) is found to give [2]

i+ A D=2 =00, a3

i.e., the NSE. The rhs can be removed by shifting the
phase of @. The NSE is known to be a fully integrable
equation, so that in principle the dynamics of a VF is
known. The transformation from 1 to c has been carried
out for several particular solutions, e.g., in Refs.
[2,9-11]. Among these are linear and nonlinear waves
and single and multiple soliton solutions. An introduc-
tion to these matters is given by Lamb [33]. The inter-
pretation of various invariants of the NSE in this context
has been given by Ricca [34], and will be briefly con-
sidered in Sec. IV. Langer and Perline [35] give several
geometric interpretations that illuminate a general class
of curve motion, to which belong the different cases treat-
ed by Lamb.
Applying now Eq. (12) to all of (7), we obtain

(14a)

(14b)

f
is eliminated in the above manner.

Consider now how stretching modifies Eq. (14). The
straightforward way is to add Eq. (8) to the system and
no longer assume A to be constant when applying (12) to
u(s). The order A term in (14c) is then replaced by

(A +9 [ D pr+97y,)ds .

[The lower integration limit will appear in 4 (z).] Equa-
tion (8) can be written

2
T s A

In the next section we will discuss what the effect of
stretching might be and how large it is.
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IV. HAMILTONIAN AND OTHER INVARIANTS.
INTEGRABILITY

Disposing of the rhs the Hamiltonian of Eq. (13) has
the simple form

Ho=A [ (Lyl*—|y,])ds .

The second and third brackets in (14c) add the higher-
order nonlinearity and dispersion terms

2
Hy =25 [ gl 12ds

and the nonlinear dispersion term
3A2
Hy === [ 1P + 94 ) =219y, *Jds

respectively, to the Hamiltonian. Apart from the full
Hamiltonian H=H,+H +H,, the quasiparticle num-
ber N and momentum II are conserved in a hierarchical
way. We have

N=[vds= [(y/)ds ,
H=f(7'ro+77'1+172)ds ,
mo=IA(YYF —9P*eh;) ,

_~3)“2 * * * *
771_’_4“[(¢'¢s _¢ ¢'s)ss_2(¢s¢ss_¢s %S)] ’

2
=i 23y )

where the partitioning was made to correspond to that of
the Hamiltonian. The integral I1; of only 7, is conserved
as well. We turn to a discussion of the conservation law

v, +(mry+m+m,),=0. (15)
Equation (14c) and its complex conjugate can be written
—iy, =D, ¢*), Y =D*¢).

First we note that D(1,%*) is homogeneous in ¢ to an or-
der of 1. Let us call this property ¢ homogeneity. Evi-
J

dently, Eq. (15) can be written
(1), =i[Y*D(,¢*)—yD(Y*, )] ,

which is 2« times the first of the two intrinsic equations
given by Germano and Ricca [31,32],

k,=(ka+p,—7y),—m(TB+v,), (16a)
T(ka+B,—71y)+(TB+v,),
= B 7; Bty +x(mB+y,),
(16b)

where we let , B, and ¥ denote the tangent, normal, and
binormal velocity, respectively. It is a general property of
a @-homogeneous NSE obtained by the Hasimoto trans-
formation that conservation of the integral of the square
of the curvature is equivalent to quasiparticle number
conservation.

Ricca has virtually shown this for the special case of
the leading order term in u(s) [34]. There, k? is propor-
tional to |u|? and v may be interpreted as a kinetic energy
density of the filament. In an Euler fluid a single straight
VF has no nonzero proper velocity. The same holds true
in a charged fluid, but there is still a finite rest energy, cf.
Eq. (10). The second term is proportional to «?, and
hence we see that the energy conservation interpretation
is possible here as well. There is an analogy with an elas-
tic, nonstretching string, which has the bending energy
proportional to k%, Variation of the string bending ener-
gy under the condition of preserved length is formally
equivalent to variation of the filament energy [36]. This,
in turn, is equivalent to the variation of H with respect to
P* [16].

The presence of invariants is more complete than indi-
cated above. The term H,+H, is one of the higher in-
variants of the unperturbed NSE. This means that Eq.
(14c) is integrable. Soliton solutions are given in Ref.
[36]. It can be noted that the functional form of the soli-
tons is the same as for the unperturbed NSE, although
the relation between amplitude, carrier velocity, and en-
velope velocity is slightly more complicated. This is a
general feature of equations for nonstretching filaments
[16,36]. The single soliton is given by

2
exp | —i AReth—%—RegAHRegs—qu
Y(s,t)==xIm§
2
cosh Imé’(s-—so)+AIm§2t—%~Im§4t]

where ¢ is the phase and s, the initial central position.
The complex parameter § assures independent tuning of
envelope velocity and amplitude. In particular, a non-
traveling soliton (standing breather) is possible.

It should be noted that the perturbation due to axial
flow, derived by Fukumoto and Miyazaki [12], led to
another integrable equation, Hirota’s equation. This is
an equation closely related to ours. It combines the NSE

, 17

and the modified Korteweg—de Vries equation, and it has
envelope solitons. Equation (14c) combines two equa-
tions that both have envelope solitons, which combine in
the simple way indicated by Eq. (17).

A priori we expect stretching to bring nonintegrability.
To get an idea of the nature of the influence of stretching
on the Hamiltonian structure, we use a perturbative ap-
proach to determine A. The leading order terms in Eq.
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(16a) give
(), = —2A(*1), —4*7A, .

This expression carries a lowest order relation between «?

and A, which we insert in Eq. (8). Dropping for a mo-
ment the A, term, integration with respect to time yields

172
5122

A= |Ads)—

The leading order correction to u(s) is seen to be of the
order

5223
_b57\,K

167, ’ (18)

Up~
about an order of magnitude smaller than the smallest
terms in Eq. (7). The term we left out will not change

this. Equation (18) corresponds to two new terms on the
left-hand side of Eq. (14¢),

5A2

_1_67\;[( |¢|2¢)sx+%|¢'|4¢] s

and a contribution to the Hamiltonian

_S5A% 1

H.= —
3 32 9 A,

(LIS + [ 2(ylE +y*g)lds . (19)
In terms of the NSE one can say that nonlinearity and
nonlinear dispersion are added. The term (19) is not real,
and it must be supplemented with the neglected term.
Since only the binormal velocity component is affected by
the A variation, and the neglected term apparently is
complicated, we are unlikely to obtain yet another inte-
grable set of terms, cf. Ref. [16]. It appears that stretch-
ing implies nonintegrability, which might affect the de-
tailed behavior of solitons. Most important, the elasticity
of soliton collisions may be lost. We will not delve into
the details of this here. When it comes to linear theory,
we will see that a qualitative difference can be dis-
tinguished.

We finally note that there is a special sense to the usual
structure

SH

= (20a)
iy =‘2—IIZ : (20b)

where ¢* is usually a dynamically equivalent time reverse
of ¢. Instead, (20b) gives the dynamics of the chiral re-
verse (7— —7) of the original filament curve. This is be-
cause of the influence of the pseudovector field B, or Q.
Indeed, time and magnetic field reversal leaves dynamics
unchanged.

V. LINEAR PROPERTIES

The first question that arises in the context of linear
theory is, “linear with respect to what?”’ We have several
choices. In particular, we will consider linearized equa-
tions for 3 and for a small displacement 8r.

A linear perturbation 8r in the location of an element

of a filament whose length is initially L results in a
stretching energy 8E,=ebL =— f edr-8ryds, if we
disregard a tangential perturbation. On the other hand,
the variation of E with L kept constant is

ﬁgl’t\>< or,

292
. _3noW

1 677_ RAAYY

8E,= [ 6r- ds . (1)

The cross product of & with Eq. (5) was substituted into
the variation of (9). Totaling 8E to zero, the linear fre-
quency is obtained:
3et 322
8 4

_ Pk?
41

1) (22)

This is the frequency of the so-called Kelvin waves [8]. If
the ground state is a straight filament, the perturbation is
a plane or helical sinusoidal rotating ripple. The perpen-
dicular force in the expression (21) for 8E, consists of the
Lorentz force (the magnetic part of ) and of the
Magnus force (the inertial part of ). We will return
briefly to this in Sec. VI A. Corresponding results in the
hydrodynamical case are more complicated, even in the
leading order term, because of lack of screening.

A linear perturbation of the ¥=0 state corresponds to
a helical ripple on the filament. This analysis presup-
poses that the perturbation satisfies 7<<k. The linear
dispersion relation of Eq. (14) is (for an initially straight
filament)

dk?

3A2k?
4 A

4

0= , (23)

which honors the conjecture of Yankov and Grechikha
[29] and fixes their € to 2. This and Eq. (22) are close to
the helicon dispersion relation, which comes as no
surprise, as helicons have been shown to be exact solu-
tions to the equation of motion [24]. Nozieres and Vinen
touched upon this as well [18]. Including the variation of
A, a term —®(2ikA;+ A )/4m is added to the rhs of
(23). This means that if A is made nonuniform by some
mechanism, waves will travel in the direction of decreas-
ing A, or increasing filament thickness. Thus, the effect
of stretching, manifested in the variation of A, is to
inflate a linear perturbation to a nonlinear wave.

Assuming a ground state of the form of a plane circle,
o=k, we find to leading order

2k | 3kt 12

k*  4k*

_ DAKk?
0=

o (24)

Imposing periodicity by the integer p, kK =pk and (24) be-
comes

172
_ DAL’

w

2
2_q1y2_P_
(p°—1) ry

Hence, for p=2,3,... the circular filament supports
linear waves. The p =1 mode only corresponds to a dis-
placement in the plane of the circle, and a tilt.
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VI. APPLICATIONS

We turn to a discussion of the possible applications of
the preceding sections. In Sec. VI A we treat type II su-
perconductivity, and in Sec. VI B we discuss plasmas in
the EMH model.

A. Type II superconductors

Flux lines in a type II superconductor (g;<<1 being
the inverse Ginzburg-Landau parameter) exhibit be-
havior that can be described in a macroscopic model.
Given the quantized magnetic flux ¢,=h /2e and a ther-
modynamically determined value of £ (referred to as the
coherence length), the motion of a flux line should be well
described by results obtained in this paper. However, un-
less the applied field H is only slightly larger than the
lower critical field H,, the flux lines will ultimately ap-
proach each other to within distances smaller than the
penetration depth A, and nonlocal and collective effects
will be important [17]. Still, a few general conclusions
can be drawn.

The law of motion of a flux line as expressed by its ve-
locity (7), in particular to leading order, takes the same
form as that of a neutral fluid VF. Applied flow and drag
forces will modify dynamics. In superfluid helium this
has been studied numerically by Schwarz [15], who finds
the local self-induction term to be dominant. Schwarz
has examined pinning, reconnection (flux line cutting),
vortex tangle formation, etc. These phenomena are
currently being investigated in superconductors. A flux
line simulation will give important information even in
this case, mutatis mutandis. For instance, pinning is a
bulk effect, sometimes modeled by friction. In recent
years reconnection has been found in anisotropic super-
conductor simulations [20]. An essential step was to
abandon the 2D approach in favor of the fully 3D in-
teraction [21]. A universal route to vortex reconnection
has been suggested, well in line with these simulations
[37]. Furthermore, in the sparse flux limit not only Kel-
vin waves [17], but also the helical distortions and the
solitons should be present, or possible to excite. The
presence of pinning makes these modes hard to detect in
reality, as it effectively disperses the spectrum.

A qualitative dynamical 3D model of pinning has been
proposed [29], where electron-density depletion centers
might catch a VF. Energy is released [cf. Eq. (10), e~n]
in the form of waves propagating away from the pinning
center. Ricca discusses how to generalize the equations
of motion by treating density variations as deformations
on a Riemannian manifold [32]. These two references
point at two different ways of treating a fluid of inhomo-
geneous density. We should mention here that in super-
conductors the number of pinning centers per flux line is
usually large, whereas in superfluid helium this is not so.

The appearance of the Magnus and Lorentz forces in
parallel in Sec. V deserves some comment. A vortex in
an external flow experiences the Magnus force. In a
naive sense magnetic flux may be considered as “elec-
tromagnetic vorticity,” and the Lorentz force is just an
“electromagnetic Magnus force.” (That charge times flux
actually gives the angular momentum contained in the

fields is easily confirmed; see, e.g., Peshkin [38].) This
terminology of ours should not be taken as a standpoint
in the revived discussion about the existence of a Magnus
force in superconductors, where microscopic arguments
are needed [39]. In the London model there is no doubt.

Our treatment of a charged fluid focused on an isotro-
pic medium, though there has long been an interest in an-
isotropic media. We wish to refer to Kogan’s paper [40]
as an early report in this direction. Later developments,
with an eye to high T, superconductors, were reviewed
by Brandt [21], as were some experiments in his review
with Essmann [41]. Recent progress in the study of the
dynamics of the flux line lattice might be traced through
Ref. [42]. We remark that in this work a quasi-2D ap-
proach is made, as the position vector of each filament is
given as a single-valued function of a Cartesian coordi-
nate. This causes the omission of an important class of
reconnection possibilities.

B. EMH plasma model

Starting from a two-fluid model of a plasma, the mag-
netohydrodynamical (MHD) model [43] is obtained by
neglecting electron mass and taking ion velocity to be the
fluid velocity. However, events occurring on time scales
shorter than the ion plasma time, or on space scales
shorter than the ion fluid penetration depth, where ions
are dominated by inertia, will not be described by the
MHD model. To evade the complexity of a two-fluid
model, the opposite extreme, the EMH model, is invoked
[22]. On space scales larger than A (which we have
defined to be the electron fluid penetration depth), the
inertial part of the generalized momentum is usually
neglected, and so, for instance, a mechanism of magnetic
field convection by electrons is found. Small scales are
generated, and therefore the inertia is kept. (Still there is
no displacement current in Ampere’s law.) A locus for
energy transfer from the magnetic field to the electrons or
vice versa is provided by the generalized momentum.

The derivation of the fluid equation in Sec. II is a stan-
dard EMH derivation. In consequence, a kind of hydro-
dynamics emerges with a screening property. Another
difference from the Euler fluid is the high energy cost of
creating voluminous twist and bend structures of the gen-
eralized vorticity lines. Either a smooth distribution is
apt, or smooth highly localized structures will appear as
argued above. We feel that the study of thin vortex fila-
ments is relevant in this context.

As is seen in Sec. IV, energy is transported (in the guise
of curvature) by the filament. Typically, a filament could
carry energy from a 3D turbulence region to a region
where dynamics is essentially 2D (cf. Hopfinger and
Brownand, Ref. [5]). The filament could then be an or-
ganizer of coherent vortices. The converse is also
imaginable.

VII. SUMMARY

We have examined a set of properties of a vortex fila-
ment in a charged fluid. By ‘“charged fluid” we can un-
derstand, e.g., the object of a time-dependent London
model for type II superconductors, or of the EMH plas-
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ma model.

Because of screening, the LIA is not needed and the ex-
pression for the VF velocity is more accurate than in the
neutral fluid case. Applying the Hasimoto transforma-
tion to the velocity, an integrable extension of the NSE is
found to govern the evolution. The form of the solutions
is similar to that of unperturbed NSE solutions. Taking
vortex stretching into account, a small, nonintegrable
contribution is added.

The VF supports linear waves, nonlinear waves, and
solitons. The soliton velocities depend on the electrostat-
ic screening in a simple way. Similar to observations in
water tank experiments, we except the filament to pro-
vide a mechanism for energy transfer in space, as well as
between different realizations (2D or 3D, kinetic or mag-
netic).

Flux line simulations for superconductors, analogous
to simulations for superfluid helium, are believed to be an
important development where an extended London mod-

el could be used. By allowing energy input, e.g., from an
external magnetic field, the flux lines will grow, and more
complex, entangling dynamics arises. Knowledge about
the formation of vortex glass might become available.
Future work will focus on some ideas pertaining to inho-
mogeneous charged fluids [29] and other generalizations
of the simplistic model treated in this paper.

As we pointed out in the Introduction, there are
several areas of investigation in VF theory still lying
open. The extension to charged fluids given in this paper
increases the set of applications, and makes further work
in the field even more important.
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